
vFPIO
A Virtual I/O Abstraction for FPGA-accelerated I/O Devices

Jiyang Chen, Harshavardhan Unnibhavi, Atsushi Koshiba,
Pramod Bhatotia

USENIX ATC 2024

I/O-acceleration is popular in the cloud (e.g. Azure Boost, Google Titanium)

I/O deviceHost

Context: FPGA-based I/O acceleration

2

FPGAs enable high-performant I/O processing in a flexible manner

Application

Task

PCIe

Task
Offload

FPGA
User Logic (e.g., Verilog)

Background: Develop I/O accelerators on FPGA

3

Application

OS (PCIe) driver Ext. I/OI/O controller

Computation logic

I/O control
data

I/O (glue) logic I/O (glue) logic

I/O cmds

I/O device

Programmability issues and no multi-tenancy

PCIe

Host (CPU)

data
control

Smart Device
FPGAs enable I/O acceleration in a flexible manner

FPGA

State-of-the-art: FPGA Shell

4

Application

OS (PCIe) driver

Smart Device

Host (CPU)

I/O controller

D
ynam

ic
Static

SchedulerI/O control

User logic

I/O

Compute

User logic

I/O

Compute
User logic

I/O

Compute

Lack of I/O virtualization introduces challenges in user logic design

Shell (e.g., Coyote)

Shells (e.g., Coyote [OSDI’20]) enhance programmability and isolation

data
control

Ext. I/O

data

I/O device

PCIe

I/O challenges in FPGAs

5

● User logic that manages device I/O is hard to program
○ Shells only expose low-level I/O device interfaces

● User logic is not portable across multiple I/O devices
○ Rewrite I/O logic for the target device even if computation logic is the same

● I/O performance is not isolated between user logics
○ Sharing I/O device between user logics degrades I/O throughput

Problem statement

6

How to design an FPGA I/O acceleration framework that enhances
programmability, portability and ensures performance isolation of user logics?

Our proposal

7

vFPIO
A portable and easy-to-use FPGA I/O acceleration framework

Design goals:

● Programmability improvements for both host and FPGA user logic

● Portability across multiple I/O devices

● Performance isolation between multiple user logics

vFPIO overview

8

FPGA

Application

OS (PCIe) driver

Host (CPU)

PCIe

D
ynam

ic
Static

vFPIO library

I/O device

Ext. I/O

User logic

Virt I/O
Compute

User logic

Virt I/O
Compute

User logic

Virt I/O
Compute

vFPIO shell
I/O controller

vFPIO Scheduler

Outline

● Motivation
● Design and workflow
● Evaluation

9

Challenge #1: Programmability

10

● Shells directly expose device I/O interfaces to user logic
○ Low-level device interfaces accessible through I/O protocols (e.g. AXI)
○ Fixed number of I/O ports and I/O width

● Limitations of shell I/O interfaces
○ Programmers need to understand low-level I/O interfaces
○ User logics contain device-specific I/O logic

Solution #1: Virtual I/O module

11

Virtual I/O
module

IO Switch

Ctrl regs

IO Switch

User
logic

I/O
device

Virtual I/O
ports

Physical I/O
ports

● Virtual I/O ports are device-agnostic
○ Connect user logic to any I/O device

● Dynamic I/O reconfiguration
○ I/O switching between virtual and

physical ports

● Exposes control interface to the host
○ vFPIO APIs for cross-device portability

I/O
device

vFPIO API

Virtual I/O module to abstract physical I/O ports into virtual I/O ports

Challenge #2: Portability

12

● User logics are forced to include low-level I/O interfaces
○ Tight coupling of computational and I/O logic
○ User logic developed for only one I/O device

● Portability issues across I/O devices
○ Same computational logic cannot be reused across I/O devices
○ Reprogram, compile and offload user logic Very expensive!

Solution #2: vFPIO library

13

● Host CPU-side software library
○ Allow host applications to configure I/O paths on the FPGA
○ I/O path reconfiguration without reconfiguring whole user logic

● POSIX-like APIs
○ I/O devices represented as files
○ Decouple computational from user logic

vFPIO library for software-driven dynamic I/O reconfiguration
across user logic and I/O devices on-demand

vFPIO
API

Description

init() Initialize vFPGA with bitstream

open() Connect user logic to device

close() Disconnect user logic from device

read() Read data from device to user logic

write() Write data to device from user logic

Challenge #3: Performance isolation

14

● Degrades I/O throughput when multiple user logics share an I/O device
○ FPGA shells divide I/O bandwidth equally

● Lacks priority based scheduling of I/O transactions
○ Execute critical applications first
○ Pause and resume low priority applications without errors

Solution #3: vFPIO scheduler

● Scheduler pair per I/O device
○ One each for read and write requests

15

Priority
configuration

vFPIO scheduler
Request switch

I/O scheduling policy

User logic User logic

I/O device

High prio Low prio

An I/O scheduler that supports priority-based scheduling in the vFPIO shell

● Multiple scheduling policies
○ Round-robin or priority-based

● Priority-based scheduling for critical apps
○ Pick I/O request with highest priority

vFPIO workflow

16

FPGA

Application

OS (PCIe) driver

Host (CPU)

PCIe

vFPIO library

I/O device

Ext. I/O

vFPIO shell
I/O controller

vFPIO Scheduler

User logic

Virt I/O

Compute

init Load
bitstream

open

I/O
config

Priority
config

read/write

User logic

Virt I/O

Compute

Outline

● Motivation
● Design and workflow
● Evaluation

17

Evaluation

● Questions
○ Performance overheads
○ I/O switching overheads
○ Performance isolation
○ Programmability benefits for both host and FPGA user logic
○ Resource consumption of vFPIO

18

Refer to the paper

Evaluation

● Experimental setup
○ 2 x AMD(R) EPYC 7413 (24 cores)
○ 2 x Xilinx Alveo U280 (8GiB HBM)
○ 2 x QSFP28 (100GbE)

● Baseline
○ Coyote [OSDI’20]: Coyote shell without virtual I/O support

19

Performance overheads

20

vFPIO’s virtual I/O abstractions introduce low performance overheads
(0.7% for memory and 1.1% for RDMA)

Higher
is better

vFPIO’s throughput compared to Coyote

I/O switching overhead

21

Application Coyote [μs] vFPIO [μs]

aes 21K 1.3

sha256 20.2K 1.3

md5 18.8K 1.3

nw 29.2K 1.3

matmul 23.9K 1.3

vFPIO’s virtual I/O abstractions enable fast I/O reconfiguration at negligible
performance overheads

Fast I/O
reconfiguration

~20K faster

Overhead of switching I/O devices in vFPIO compared to Coyote

Performance isolation of vFPIO’s scheduler

22

vFPIO’s performance isolation for multiple user logics

Lower
is better

vFPIO’s priority scheduler improves high-priority application’s performance
by 1.7x compared to a round-robin I/O scheduler

Priority scheduler Round robin scheduler

Summary

23

Try it out!
https://github.com/TUM-DSE/vFPIO

vFPIO: FPGA I/O acceleration framework

● Virtual I/O module improves programmability for user logic managing I/Os

● vFPIO APIs improves user-logic portability across different I/O devices

● vFPIO scheduler ensures performance isolation during I/O device access

For FPGA user logics on Smart I/O devices,
How to ensure their programmability, portability and performance isolation?

https://github.com/TUM-DSE/vFPIO

