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I/O-acceleration is popular in the cloud (e.g. Azure Boost, Google Titanium)
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Context: FPGA-based I/O acceleration
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FPGAs enable high-performant I/O processing in a flexible manner
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FPGA
User Logic (e.g., Verilog)

Background: Develop I/O accelerators on FPGA
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FPGA

State-of-the-art: FPGA Shell 
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Lack of I/O virtualization introduces challenges in user logic design

Shell (e.g., Coyote)

Shells (e.g., Coyote [OSDI’20]) enhance programmability and isolation
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I/O challenges in FPGAs
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● User logic that manages device I/O is hard to program 
○ Shells only expose low-level I/O device interfaces

● User logic is not portable across multiple I/O devices 
○ Rewrite I/O logic for the target device even if computation logic is the same

● I/O performance is not isolated between user logics
○ Sharing I/O device between user logics degrades I/O throughput 



Problem statement
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How to design an FPGA I/O acceleration framework that enhances 
programmability, portability and ensures performance isolation of user logics?



Our proposal
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vFPIO
A portable and easy-to-use FPGA I/O acceleration framework

Design goals:

● Programmability improvements for both host and FPGA user logic

● Portability across multiple I/O devices

● Performance isolation between multiple user logics



vFPIO overview
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Outline

● Motivation
● Design and workflow
● Evaluation
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Challenge #1: Programmability
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● Shells directly expose device I/O interfaces to user logic
○ Low-level device interfaces accessible through I/O protocols (e.g. AXI)
○ Fixed number of I/O ports and I/O width

● Limitations of shell I/O interfaces
○ Programmers need to understand low-level I/O interfaces
○ User logics contain device-specific I/O logic



Solution #1: Virtual I/O module
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● Virtual I/O ports are device-agnostic
○ Connect user logic to any I/O device

● Dynamic I/O reconfiguration
○ I/O switching between virtual and 

physical ports

● Exposes control interface to the host
○ vFPIO APIs for cross-device portability

I/O 
device

vFPIO API

Virtual I/O module to abstract physical I/O ports into virtual I/O ports



Challenge #2: Portability
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● User logics are forced to include low-level I/O interfaces
○ Tight coupling of computational and I/O logic
○ User logic developed for only one I/O device

● Portability issues across I/O devices
○ Same computational logic cannot be reused across I/O devices
○ Reprogram, compile and offload user logic Very expensive!



Solution #2: vFPIO library
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● Host CPU-side software library
○ Allow host applications to configure I/O paths on the FPGA
○ I/O path reconfiguration without reconfiguring whole user logic

● POSIX-like APIs
○ I/O devices represented as files
○ Decouple computational from user logic

vFPIO library for software-driven dynamic I/O reconfiguration 
across user logic and I/O devices on-demand

vFPIO 
API

Description

init()  Initialize vFPGA with bitstream

open()  Connect user logic to device

close()  Disconnect user logic from device

read()  Read data from device to user logic

write()  Write data to device from user logic



Challenge #3: Performance isolation
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● Degrades I/O throughput when multiple user logics share an I/O device
○ FPGA shells divide I/O bandwidth equally

● Lacks priority based scheduling of I/O transactions
○ Execute critical applications first
○ Pause and resume low priority applications without errors 



Solution #3: vFPIO scheduler

● Scheduler pair per I/O device
○ One each for read and write requests
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An I/O scheduler that supports priority-based scheduling in the vFPIO shell

● Multiple scheduling policies
○ Round-robin or priority-based

● Priority-based scheduling for critical apps
○ Pick I/O request with highest priority



vFPIO workflow
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Outline

● Motivation
● Design and workflow
● Evaluation
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Evaluation

● Questions
○ Performance overheads
○ I/O switching overheads
○ Performance isolation
○ Programmability benefits for both host and FPGA user logic
○ Resource consumption of vFPIO
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Refer to the paper



Evaluation

● Experimental setup
○ 2 x AMD(R) EPYC 7413 (24 cores)
○ 2 x Xilinx Alveo U280 (8GiB HBM)
○ 2 x QSFP28 (100GbE)

● Baseline
○ Coyote [OSDI’20]: Coyote shell without virtual I/O support
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Performance overheads

20

vFPIO’s virtual I/O abstractions introduce low performance overheads
(0.7% for memory and 1.1% for RDMA)

Higher 
is better

vFPIO’s throughput compared to Coyote



I/O switching overhead
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Application Coyote [μs] vFPIO [μs]

aes 21K 1.3

sha256 20.2K 1.3

md5 18.8K 1.3

nw 29.2K 1.3

matmul 23.9K 1.3

vFPIO’s virtual I/O abstractions enable fast I/O reconfiguration at negligible 
performance overheads

Fast I/O 
reconfiguration

~20K faster

Overhead of switching I/O devices in vFPIO compared to Coyote



Performance isolation of vFPIO’s scheduler
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vFPIO’s performance isolation for multiple user logics

Lower 
is better

vFPIO’s priority scheduler improves high-priority application’s performance 
by 1.7x compared to a round-robin I/O scheduler

Priority scheduler Round robin scheduler



Summary
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Try it out!
https://github.com/TUM-DSE/vFPIO

vFPIO: FPGA I/O acceleration framework

● Virtual I/O module improves programmability for user logic managing I/Os

● vFPIO APIs improves user-logic portability across different I/O devices

● vFPIO scheduler ensures performance isolation during I/O device access

For FPGA user logics on Smart I/O devices, 
How to ensure their programmability, portability and performance isolation? 

https://github.com/TUM-DSE/vFPIO

