vFPIO

A Virtual 1/0 Abstraction for FPGA-accelerated 1/0O Devices

Jiyang Chen, Harshavardhan Unnibhavi, Atsushi Koshiba,
Pramod Bhatotia

TUTI

USENIX ATC 2024

Context: FPGA-based I/0 acceleration TUTI

I/O-acceleration is popular in the cloud (e.g. Azure Boost, Google Titanium)

Host 1/0 device
Application

Offload

FPGAs enable high-performant I/O processing in a flexible manner

Background: Develop I/O accelerators on FPGA

— Host (CPU) —

Application

———————————————————

/O control _

OS (PCle) driver

FPGASs enable I/O acceleration in a flexible manner

Smart Device

FPGA

User Logic (e.g., Verilog)

Computation logic

i

I/O (glue) logic

i

I/0O (glue) logic

""" t"""';llOcmds t

I/O controller

TUTI

CExt. 1/0)

— 1/O device

8

[data |

Programmability issues and no multi-tenancy

State-of-the-art: FPGA Shell

Shells (e.g., Coyote [OSDI'20]) enhance programmability and isolation

— Host (CPU) —

Application

I/O control -

OS (PCle) driver

TUTI

Smart Device

[= «d C 7 S
E User logic! 'User logic: User logic
'3 |Compute| |Compute| '|Computel| !
g — | — i —
5 10 /0 o |
P T RTatt EItatat. Eatatatitatatat. SaaY
| Y |
_____ NG Scheduler I
0 3 :
| B
) /O controller

Shell (e.g., Coyote)

KExt 0

— 1/O device

i

[data |

Lack of I/O virtualization introduces challenges in user logic design

/O challenges in FPGAs

e User logic that manages device /O is hard to program
o Shells only expose low-level I/O device interfaces

e User logic is not portable across multiple 1/0 devices
o Rewrite I/O logic for the target device even if computation logic is the same

e /O performance is not isolated between user logics
o Sharing I/O device between user logics degrades |/O throughput

Problem statement TUTI

How to design an FPGA I/O acceleration framework that enhances
programmability, portability and ensures performance isolation of user logics?

Our proposal TUTI

vFPIO
A portable and easy-to-use FPGA I/O acceleration framework

Design goals:

e Programmability improvements for both host and FPGA user logic

e Portability across multiple I/O devices

e Performance isolation between multiple user logics

vFPIO overview

— Host (CPU) —
Application

OS (PCle) driver

 PCle)|

onels

.. FPGA .
E User logic | ' User logic | | User logic
'® |Compute| '|Compute| '|Compute
2 [Virtio Virt 10 | | virt 1/0
---------------------- T S S
]
VFPIO Scheduler

!

I/O controller

VFPIO shell

__

— 1/0O device —

o

TUTI

Outline

Motivat
e Design and workflow
e [Evaluation

Challenge #1: Programmability

e Shells directly expose device I/O interfaces to user logic

o Low-level device interfaces accessible through 1/0O protocols (e.g. AXI)
o Fixed number of I/O ports and I/O width

e Limitations of shell I/O interfaces
o Programmers need to understand low-level I/O interfaces
o User logics contain device-specific 1/0O logic

10

Solution #1: Virtual I/0O module

Virtual I/0O module to abstract physical I/O ports into virtual I/0O ports

TUTI

Virtual I/O ports are device-agnostic Virtual I/O
o Connect user logic to any I/O device
g g VFPIO AP WECEE
—> Ctrlregs
Dynamic |/O reconfiguration — 10 fwitch —+—{ 10
o |/O switching between virtual and _A: — | device
physical ports US?r v
logic 10 Switch
S] /0
Exposes control interface to the host b device
o VFPIO APIs for cross-device portability Virtual 1/0 Physical 1/0

ports

ports

11

Challenge #2: Portability

e User logics are forced to include low-level I/O interfaces
o Tight coupling of computational and I/O logic
o User logic developed for only one 1/O device

e Portability issues across I/O devices
o Same computational logic cannot be reused across I/O devices
o Reprogram, compile and offload user logic } Very expensive!

12

Solution #2: VFPIO library TUTI

VFPIO library for software-driven dynamic I/O reconfiguration
across user logic and I/O devices on-demand

e Host CPU-side software library
o Allow host applications to configure 1/O paths on the FPGA
o 1/O path reconfiguration without reconfiguring whole user logic

vFPIO Description
_ API
e POSIX-like APIs init() | Initialize vVFPGA with bitstream
o 1/O devices represented as files open() | Connect user logic to device

o Decouple computational from user logic close() | Disconnect user logic from device

read() | Read data from device to user logic

write() | Write data to device from user logic

13

Challenge #3: Performance isolation TUTI

e Degrades I/O throughput when multiple user logics share an 1/O device
o FPGA shells divide I/O bandwidth equally

e Lacks priority based scheduling of I/O transactions
o Execute critical applications first
o Pause and resume low priority applications without errors

14

Solution #3: VFPIO scheduler TUTI

An 1/O scheduler that supports priority-based scheduling in the vFPIO shell

e Scheduler pair per I/O device High prio Low prio
o One each for read and write requests

User logic| |User logic

e Multiple scheduling policies Briorit l T l
riori
o Round-robin or priority-based Configura)’:ion VFPIO Sche.duler
> Request switch

e Priority-based scheduling for critical apps l T
o Pick I/0O request with highest priority

I/0O device

15

vFPIO workflow

— Host (CPU) —

Application

read/write

O * _________)

" VFPIO library —

OS (PCle) driver

Lo

bitstrgam|

I
— Priority —
config

" PCle)|

‘User logic

'User logic

Compute

Compute
POTTPEEE

Virt 1/0

vFPIO Scheduler

}

I/O controller

VFPIO shell

__

__

TUTI

— 1/0O device —

|

Outline

Motivat
o—Desigrand-workflow

e Evaluation

17

Evaluation T|_|T|

e Questions

Performance overheads

I/O switching overheads

Performance isolation

Programmability benefits for both host and FPGA user logic }Refer to the paper
Resource consumption of vFPIO

o O O O O

18

Evaluation

e Experimental setup
o 2 xAMD(R) EPYC 7413 (24 cores)
o 2 x Xilinx Alveo U280 (8GiB HBM)
o 2 x QSFP28 (100GbE)

e Baseline
o Coyote [OSDI'20]: Coyote shell without virtual I/O support

19

Performance overheads TUTI
VFPIO’s throughput compared to Coyote

w | TN
% 10°; cS - 1 Coyote T
= , [vFPIO
= 10 ' N N ;
&] .
o 10*3 <~ ~ Higher
8 ((is better
| s |
-IE 10°; T N N F
S o A% N a2 ; o \ :
2 \(\0’2’6 «\6 (\\“ ((\6,6(\0 6\(\3 ((\g Q’L\Q 089 \(\’0’7’6 ((\66 (\“‘ a&((\\) 6\(\6’5 ((\04' (SL\Q
Memory benchmarks RDMA benchmarks

VFPIQO’s virtual I/O abstractions introduce low performance overheads
(0.7% for memory and 1.1% for RDMA)

20

I/O switching overhead

TUTI

Overhead of switching I/O devices in vFPIO compared to Coyote

Application
aes
sha256
md5
nw

matmul

Coyote [ps]
21K
20.2K
18.8K
29.2K

23.9K

VFPIO [us]
1.3
1.3
1.3
1.3

1.3

\

.

J

Fast I/O
reconfiguration
~20K faster

VFPIO'’s virtual I/O abstractions enable fast I/O reconfiguration at negligible
performance overheads

21

Performance isolation of vFPIO’s scheduler

VFPIO’s performance isolation for multiple user logics

le7

1.25k
1.00
n
9
o 0.75H Lower
(@] .
0.50} is better
0.25
0.00 —y - o ey
Hi Priority Low Priorityl Low Priority2 Round Robin
\ / \ /
Priority scheduler Round robin scheduler

VFPIO'’s priority scheduler improves high-priority application’s performance
by 1.7x compared to a round-robin I/O scheduler

Summary TUTI

For FPGA user logics on Smart |I/O devices,
How to ensure their programmability, portability and performance isolation?

VFPIO: FPGA I/O acceleration framework

e Virtual /0 module improves programmability for user logic managing 1/Os
e VFPIO APIs improves user-logic portability across different I/O devices
e VFPIO scheduler ensures performance isolation during 1/O device access

Try it out!
https://qithub.com/TUM-DSE/VFPIO

ARTIFACT ARTIFACT ARTIFACT
EVALUATED EVALUATED EVALUATED

.....................

REPRODUCED

23

https://github.com/TUM-DSE/vFPIO

