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Context: FPGA-based I/0 acceleration TUTI

I/O-acceleration is popular in the cloud (e.g. Azure Boost, Google Titanium)
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FPGAs enable high-performant I/O processing in a flexible manner



Background: Develop I/O accelerators on FPGA
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Programmability issues and no multi-tenancy




State-of-the-art: FPGA Shell

Shells (e.g., Coyote [OSDI'20]) enhance programmability and isolation

— Host (CPU) —

Application

I/O control -

OS (PCle) driver

TUTI

Smart Device

[ = «d C 7 S
E User logic! 'User logic: User logic
'3 |Compute| |Compute| '|Computel| !
g — | — i —
5 10 /0 o |
P T RTatt EItatat. Eatatatitatatat. SaaY
| Y |
_____ NG Scheduler I
0 3 :
| B
) /O controller

Shell (e.g., Coyote)

KExt 0

— 1/O device

i

[ data |

Lack of I/O virtualization introduces challenges in user logic design




/O challenges in FPGAs

e User logic that manages device /O is hard to program
o Shells only expose low-level I/O device interfaces

e User logic is not portable across multiple 1/0 devices
o Rewrite I/O logic for the target device even if computation logic is the same

e /O performance is not isolated between user logics
o Sharing I/O device between user logics degrades |/O throughput



Problem statement TUTI

How to design an FPGA I/O acceleration framework that enhances
programmability, portability and ensures performance isolation of user logics?



Our proposal TUTI

vFPIO
A portable and easy-to-use FPGA I/O acceleration framework

Design goals:

e Programmability improvements for both host and FPGA user logic

e Portability across multiple I/O devices

e Performance isolation between multiple user logics




vFPIO overview
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Outline

Motivat
e Design and workflow
e [Evaluation



Challenge #1: Programmability

e Shells directly expose device I/O interfaces to user logic

o Low-level device interfaces accessible through 1/0O protocols (e.g. AXI)
o Fixed number of I/O ports and I/O width

e Limitations of shell I/O interfaces
o Programmers need to understand low-level I/O interfaces
o User logics contain device-specific 1/0O logic
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Solution #1: Virtual I/0O module

Virtual I/0O module to abstract physical I/O ports into virtual I/0O ports

TUTI
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Challenge #2: Portability

e User logics are forced to include low-level I/O interfaces
o Tight coupling of computational and I/O logic
o User logic developed for only one 1/O device

e Portability issues across I/O devices
o Same computational logic cannot be reused across I/O devices
o Reprogram, compile and offload user logic } Very expensive!
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Solution #2: VFPIO library TUTI

VFPIO library for software-driven dynamic I/O reconfiguration
across user logic and I/O devices on-demand

e Host CPU-side software library
o Allow host applications to configure 1/O paths on the FPGA
o 1/O path reconfiguration without reconfiguring whole user logic

vFPIO Description
_ API
e POSIX-like APIs init() | Initialize vVFPGA with bitstream
o 1/O devices represented as files open() | Connect user logic to device

o Decouple computational from user logic close() | Disconnect user logic from device

read() | Read data from device to user logic

write() | Write data to device from user logic
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Challenge #3: Performance isolation TUTI

e Degrades I/O throughput when multiple user logics share an 1/O device
o FPGA shells divide I/O bandwidth equally

e Lacks priority based scheduling of I/O transactions
o Execute critical applications first
o Pause and resume low priority applications without errors
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Solution #3: VFPIO scheduler TUTI

An 1/O scheduler that supports priority-based scheduling in the vFPIO shell

e Scheduler pair per I/O device High prio  Low prio
o One each for read and write requests

User logic| |User logic

e Multiple scheduling policies Briorit l T l
riori
o Round-robin or priority-based Configura)’:ion VFPIO Sche.duler
> Request switch

e Priority-based scheduling for critical apps l T
o Pick I/0O request with highest priority

I/0O device
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vFPIO workflow
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Evaluation T|_|T|

e Questions

Performance overheads

I/O switching overheads

Performance isolation

Programmability benefits for both host and FPGA user logic }Refer to the paper
Resource consumption of vFPIO

o O O O O
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Evaluation

e Experimental setup
o 2 xAMD(R) EPYC 7413 (24 cores)
o 2 x Xilinx Alveo U280 (8GiB HBM)
o 2 x QSFP28 (100GbE)

e Baseline
o Coyote [OSDI'20]: Coyote shell without virtual I/O support
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Performance overheads TUTI
VFPIO’s throughput compared to Coyote
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VFPIQO’s virtual I/O abstractions introduce low performance overheads
(0.7% for memory and 1.1% for RDMA)
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I/O switching overhead

TUTI

Overhead of switching I/O devices in vFPIO compared to Coyote
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VFPIO'’s virtual I/O abstractions enable fast I/O reconfiguration at negligible
performance overheads
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Performance isolation of vFPIO’s scheduler

VFPIO’s performance isolation for multiple user logics
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VFPIO'’s priority scheduler improves high-priority application’s performance
by 1.7x compared to a round-robin I/O scheduler



Summary TUTI

For FPGA user logics on Smart |I/O devices,
How to ensure their programmability, portability and performance isolation?

VFPIO: FPGA I/O acceleration framework

e Virtual /0 module improves programmability for user logic managing 1/Os
e VFPIO APIs improves user-logic portability across different I/O devices
e VFPIO scheduler ensures performance isolation during 1/O device access

Try it out!
https://qithub.com/TUM-DSE/VFPIO
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