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Abstract
Modern cloud systems have adopted a variety of FPGA-
accelerated I/Odevices, suchas SmartNICs andcomputational
storage, while they face programmability and portability
challenges. Existing FPGA frameworks either directly expose
device-specific I/O interfaces to user logic or offer virtualized
I/Os limited to a single device type. The lack of I/O abstraction
imposes high engineering costs, less design portability, and
even unexpected throughput degradation.
We introduce vFPIO, an FPGA-based I/O acceleration

framework that brings better programmability and design
portability. vFPIO extends modern FPGA OSes to expose
virtual I/O ports to user logic, which abstracts device-
dependent I/O specifications and makes the user logic
design platform-agnostic. The connectivity between virtual
and physical I/O ports can be easily configured by host
applications using POSIX-like file APIs. vFPIO also offers a
preemptive I/O transaction scheduler that alleviates the I/O
throughput degradation caused by concurrent I/O requests
frommultiple accelerators in a multi-tenant environment.

We implement a prototype of the vFPIO framework on x86
servers equippedwithAMDXilinx Alveo U280 cards and sup-
port four different I/O interfaces: PCIe, DRAM,HBM, and net-
work. Our evaluation highlights that vFPIO incurs negligible
performance overheads compared to Coyote, one of the latest
FPGAOSes, while preserving the maximum I/O throughput
for high-priority tasks even under resource contention.

1 Introduction
I/O acceleration using Field-Programmable Gate Arrays
(FPGAs) is an emerging trend in modern cloud computing
systems. Network and storage interfaces have rapidly evolved
to improve the I/O bandwidth (e.g., Terabit Ethernet [20],
PCIe 6.0 [11]) and high-speed data protocols (e.g., NVMe [9],
CXL [6]). Although these high-speed I/Os contribute to ac-
celerating data-intensive workloads, traditional CPU-centric
architectures cannot fully exploit them because of redundant
data movements between CPUs and devices [48, 55]. To
bridge this gap, the industry and research groups leverage
FPGAs to manage high-speed I/O devices without host
CPU intervention: PCIe-based FPGA cards [1, 7], Smart-
NICs [2,8,27], computational storages [12,46,47,55,56]. These
smart devices allow custom accelerators on FPGAs to directly
process data streams transferred through the high-speed I/Os,
which achieves stable and massive performance gains [30].

Despite the high performance and flexibility of FPGA-
driven I/Os,designinganddevelopingFPGAacceleratorsman-
aging various I/Os impose high engineering efforts due to the
lack of I/O abstraction. FPGA vendors offer preset hardware
modules configured on a static region to facilitate connecting
user logic and external I/O devices (i.e., Shells). However, they
expose dedicated I/O interfaces to a programmable region and
leave it to user logic to control device-specific I/Os [5, 17] or
pose limitations to supported I/O devices [10]. Consequently,
developers need to carefully design theiruser logic to combine
computation logic and I/O control logic. Such complex hard-
ware design burdens developers and leads to poor portability
because the computational logic of FPGA accelerators is
tightly coupled with device-dependent I/O logic.
While recent studies have explored FPGA operating

systems for abstracting both on-chip and off-chip peripherals
from user logic [32, 34, 36], challenges persist in supporting
a broader range of I/O devices and effectively managing I/O
contention. The state-of-the-art FPGAOSes focus on spatial
sharing andmemory virtualization, allowingmultiple acceler-
ators to be configured on a single FPGA chipwhile preserving
memory isolation. However, they fall short in I/O abstraction;
some only target memory I/Os [32, 36], while others expose
device-specific I/O interfaces [34]. Moreover, existing spatial
sharing mechanisms are susceptible to I/O contention, where
multiple accelerators simultaneously request access to the
same I/O interface, causing performance degradation. Prior
approaches like Coyote and FSRF [34, 36] distribute available
bandwidth fairly among accelerators using a round-robin
scheme. This method cannot prioritize I/O requests, which
is critical for latency- and throughput-sensitive workloads.
These challenges motivate us to design a new FPGA I/O

acceleration framework that abstracts device-specific I/O
interfaces from users’ accelerators and improves programma-
bility and portability while mitigating I/O contentions among
multiple accelerators.
We propose vFPIO, an FPGA-based I/O acceleration

framework that simplifies FPGA development with three
key features. First, vFPIO abstracts user logic I/O ports as
virtual I/Os. These virtual I/Os act as a layer of abstraction,
decoupling device-specific I/O control logic from user
logic and allowing the user logic to connect dynamically
to various external I/O devices without code modification.
Second, vFPIO offers vFPIO APIs, POSIX-like file APIs that
allow host applications to configure virtual I/O connections



without reconfiguring FPGA. These simple APIs reduce the
development efforts of FPGA I/O applications. Third, vFPIO
offers an FPGA Shell equipped with I/O transaction schedulers
that reorder I/O transaction requests to corresponding DMAs
and I/O controllers. The schedulers allow I/O-intensive
workloads to preserve the maximum throughput regardless
of the other accelerators running in parallel.
We implement the vFPIO framework on x86 servers

equipped with Alveo U280, a datacenter-grade AMDXilinx
FPGA card. The key hardware components of vFPIO are
implemented by extending Coyote [34], an open-source
FPGA OS. Our implementation supports two types of
memory devices (host DRAM and FPGA HBM), PCIe, and
network (RDMA) for I/O acceleration.
We evaluate vFPIO’s programmability, portability, and

performance isolation with various FPGA applications.
Our evaluation results highlight that vFPIO incurs only 1%
performance overheads on average for the application’s
end-to-end performance compared to Coyote. vFPIO
also ensures consistent I/O throughput of high-priority
applications regardless of co-running applications.

Our main contributions are as follows:
• FPGA I/O virtualization. The virtual I/O ports allow
developers to focus on designing the computation part
only while improving the portability of user logic for
various FPGA-accelerated devices.

• Dynamic I/O switching between devices. We
design POSIX-like file APIs that allow applications
to dynamically switch connections among different
devices without time-consuming FPGA reconfiguration.

• I/O performance isolation. We propose an I/O
transaction scheduler that reorders data transfer
requests from user logic according to user-defined
priorities. It guarantees the throughput of I/O-critical
workloads even if the I/O contention happens.

2 Background andMotivation
2.1 Background

FPGA-driven I/O. FPGAs are more suitable for stream data
processing than CPUs as they are designed to execute mul-
tiple operations in parallel and can better pipeline operations.
They can be configured to implement custom hardware
logic for the target algorithm to improve throughput, reduce
CPU usage, and save energy consumption. They have been
deployed for near-data processing, such as near-memory [51]
and near-storage [46] computing. FPGAs can also include
a network stack for high-throughput packet processing [29].
FPGA programming. FPGA applications are composed of
two parts: the host code and the FPGA kernel. The host code
runs on CPUs and communicates with FPGA for initialization
and task offloading. The kernel represents the user logic con-
figured on FPGA and is programmed using hardware descrip-
tion languages (HDL) such as Verilog and VHDL. High-Level
Synthesis (HLS) has evolved to simplify this development

flow by allowing developers to use high-level languages such
as C and C++ to describe the hardware design [40].
FPGA Shell and OS. The FPGA Shell is a set of I/O and
control logic programmed in the static region of the FPGA.
The Shells provided by FPGA vendors typically offer com-
munication interfaces between host (CPU) and accelerators,
interconnects to onboard devices (DDR, network ports),
and DMAs [16]. Some FPGA OSes have been proposed as
a set of dedicated hardware modules integrated into the
Shell [32, 34, 36, 57]. They are designed to allow multiple
accelerators to be configured on the same FPGA and offer
OS-level resource abstractions, such as spatial and temporal
multiplexing [32, 34] and memory abstraction [34, 36].
2.2 Motivation

State-of-the-art. FPGA developers commonly use vendor-
provided Shells for designing and building I/O accelerators
on modern FPGA devices [5, 16, 17]. These vendor-provided
Shells implement dedicated controllers for external I/Os and
expose low-level interfaces to reconfigurable slots where user
logic is programmed. Using these Shells, however, developers
must carefully design their user logic so that its I/O specifica-
tions (data protocol types, port widths, and the number of I/O
ports) meet the target I/Os requirements. Moreover, even mi-
nor adjustments to the I/O configuration, suchas connecting a
new device, demand an update of the entire user logic design.

Meanwhile,manyFPGAOSeshavebeenproposedformulti-
tenancy support on FPGA [32,34,36,38,57],which support I/O
abstraction. However, their features mainly focus onmemory
virtualization and need to be more for various I/O devices.
AmorphOS [32] and Coyote [34] support virtual memory,
abstracting local FPGA memories and translating memory
addresses accessed from user logic. FSRF [36] supports file
system-basedmemory abstraction,which allows host applica-
tions to map files into virtual FPGAmemories via POSIX-like
APIs. While these FPGA OSes handle off-chip memory
(DRAM, HBM) abstraction, other I/O devices remain unad-
dressed. Although Coyote [34] provides network interfaces,
it directly exposes them to user logic without virtualization.
Limitations. Despite progress in I/O abstraction, state-
of-the-art FPGA systems still face limitations hindering
developer adoption.
First, they do not fully abstract device-specific I/O

interfaces from the hardware design of user logic. Existing
FPGA OSes [32, 34, 36] remain tethered to specific I/O details
and force developers to work with low-level I/O control
details, such as interface protocol, port level protocol, and
register mode, to ensure proper connection and optimal
data throughput. Consequently, user logic designs become
burdened with device-specific I/O control functionalities.
Second, they are limited in the range of integrated I/O

interfaces. Some accelerators designed for generic algorithms,
such as hashing and data compression, can be adapted
to different types of I/O devices; they can process data



regardless of the format and potentially work with diverse
I/O sources, e.g., both disk and network I/Os. However,
due to the limitations of FPGA programming, they must
be re-synthesized and compiled when I/O interfaces are
modified. This process can take hours or even days [26,35,64],
significantly impacting development time. While user logic
can leverage the same interfaces for various back-end I/O
devices as data sources or sinks, existing frameworks hinder
efficient switching between these sources and sinks.
Third, they lack mechanisms to handle I/O contentions

when multiple accelerators compete for the same interface.
Existing FPGAOSes simply multiplex I/O requests and fairly
divide the available bandwidth for accelerators using the
same I/O device, i.e., round robin [32, 34, 38]. The growing
popularity of frameworks supporting temporal sharing
of FPGA between diverse FPGA applications exposes I/O
contention as a critical performance bottleneck. When
multiple user logics run concurrently using the same I/O
device, their throughput suffers significant degradation.
Our proposal. To address these challenges, we propose
the vFPIO framework, a hardware-software co-design
that offers improved programmability and portability for
FPGA I/O accelerators while ensuring the I/O throughput
for high-priority tasks during resource contention. vFPIO
thrives in dynamic environments like multi-tenant clouds
where multiple applications with varying priorities compete
for a limited pool of FPGA devices; vFPIO enables efficient
time-sharing through fast dynamic reconfiguration, and its
priority scheduler gives critical workloads better access to
hardware resources than non-critical ones.

3 Overview
3.1 SystemOverview
The vFPIO framework simplifies coding, enhances flexibility
for various I/O devices, and handles I/O contention in a
multi-tenant situationwith the help of the virtual I/O concept.
The key insight is that vFPIO exposes virtual I/O ports
to user logic, eliminating the need for direct connections
to devices and letting the underlying hardware/software
components transparently handle the actual I/O connections.
This approach decouples device-specific I/O interfaces from
users’ hardware design and allows host applications to
configure these devices using a unified interface.
System components. Figure 1 illustrates a system overview
of the vFPIO framework. We assume that the FPGA device
is connected to the host machine through PCI Express as
well as modern FPGA devices such as cloud FPGA cards [1],
SmartNICs [2], and SmartSSDs [12]. The FPGA board offers
one or more reconfigurable slots named virtual FPGA (vF-
PGA), where user logic is configured. The vFPIO framework
comprises three main components: vFPIO library, virtual I/O
module, and scheduler. The vFPIO library offers POSIX-like
file APIs to configure I/O connections between user logic and
devices and initiate I/O transactions. The Virtual I/O module
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Figure 1: An overview of the vFPIO framework.

abstracts platform-specific I/O ports from user logic and
sets up the interfaces between vFPGA and I/O devices. The
scheduler is responsible for scheduling I/O transactions.
System workflow. The HDL code of user logic must be
synthesized with the virtual I/O wrapper. The wrapper
contains hardwaremodules exposing virtual I/O ports to user
logic (step 1⃝). At the execution phase, the host application
initializes vFPGAs with the bitstream of user logic (step
2⃝) and then configures the connection between the user
logic and external I/Os via POSIX-like file APIs such as
open() and close() (step 3⃝). These APIs write parameters to
memory-mapped registers of the scheduler and the Virtual
I/O module. Lastly, data transfers are triggered by read() and
write() APIs (step 4⃝). These APIs invoke DMAs dedicated
to managing the external I/Os.
Design goals.We design the vFPIO framework to achieve
the following goals.

• Programmability: vFPIO allows developers to design
their user logic without being aware of I/O constraints
such as portwidths anddevice types,which brings better
application programmability and compatibility.

• Portability: vFPIO allows applications to dynamically
switch the interconnects betweenuser logic and external
I/Os without changing the hardware design or reconfig-
uring the FPGA.

• Performance isolation: vFPIO alleviates I/O con-
tentions caused when multiple accelerators invoke I/O
transactions in parallel to retain the peak I/O throughput
for high-priority applications.

3.2 Design Challenges and Key Ideas
vFPIO addresses the following design challenges.
#1 Virtualizing device-specific I/O interfaces. For FPGA
I/O acceleration, user logic connects to external I/O ports
offered by FPGA Shells, which imposes a design limitation.



Existing Shells and FPGAOSes are equipped with dedicated
I/O controllers and DMAs that convert device-specific
interfaces (e.g., PCIe, QSFP, DDR) to common I/O protocols
(e.g., AXI stream) and expose them to user logic [5, 34].
However, the Shell-provided I/O ports still impose constraints
on the user logic design, such as the number of I/O ports and
bus widths. These constraints make the user logic design
incompatible among different FPGA platforms and not
connectable to different I/O devices supported by the same
Shell without updating the design.
We propose a virtual I/Omodule, a wrapper module that

abstracts external (physical) I/O ports as virtual I/O ports. The
module allows user logic to be device-agnostic and connect
to any I/O device regardless of device type, improving the
design portability and compatibility (described in § 4.2).
#2 Dynamic FPGA I/O configuration. Programming inter-
faces to configure virtual I/Omodulesmust be exposed to host
applications so thatapplicationsflexiblychange I/Odirections
of user logic across various I/O devices on demand. However,
modern FPGA systems relying on Shells and OSes [16, 34, 36]
do not offer such flexible I/O programming models because
they statically configure I/O interconnects between user logic
and devices. BORCH [53] and FSRF [36] explore a file-based
abstraction and file I/O APIs for memory devices, while they
cannot cover different I/O interfaces such as networks.

To solve this challenge, the vFPIO framework provides vF-
PIOAPIs, POSIX-like file APIs that allow FPGA applications
to dynamically change the interconnects between user logic
and I/O devices (described in § 4.3).
#3 Device I/O contention. Current FPGA frameworks that
supportmultiple vFPGAslots offeronly aRound-Robin policy
for I/O transaction scheduling [32, 34, 36]. This scheduling
policy does not solve resource contention issues when
many user logics use the same I/O device. Implementing a
preemptive priority-based scheduling policy requires the
ability to pause the execution of low-priority applications
and resume later without errors.
We provide an I/O scheduler that supports a preemptible

priority-basedschedulingpolicy. In resource contention,high-
priority user logic can preempt others and execute first. This
design guarantees that critical application execution is not
affected by other co-existing applications (described in § 4.4).

4 Design
4.1 vFPIO Shell
Figure 2 illustrates the detailed architecture of the vFPIO
Shell. The vFPIO Shell adopts a streaming channel for data
buses between user logic anddedicated I/O controllers/DMAs.
The Shell also uses a lightweight control interface for control
buses. As well as the latest FPGAOSes [32, 34, 36], the vFPIO
Shell is equipped with two types of fundamental hardware
modules: MMUs for memory virtualization and dedicated I/O
controllers/DMAs for individual I/O devices. TheMMUs over-
see the address of host/local memories and manage a virtual
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Figure 2: vFPIO Shell architecture. The architecture is based on
Coyote [34], one of the latest FPGA OS. The key components are
colored orange to highlight the changes from Coyote [34].

memory space provided to user logic. They translate virtual
and physical memory addresses of read/write requests when
handlingmemory reads/writes and invoke the corresponding
DMAsto triggerdata transfers. Upon theDMArequests issued
by the MMU, the corresponding controller or DMA invokes
stream data transfers between the user logic and the device.
The DMAs and controllers are also responsible for converting
the streaming protocol into device-specific data protocols.
We highlight two hardware modules in the Shell archi-

tecture: the virtual I/O modules and the vFPIO scheduler. We
assume host applications trigger all data transfers between
user logic and devices. The virtual I/Omodule is the glue logic
between user logic and the Shell; it abstracts the I/O speci-
fications of the Shell (e.g., the number of I/O ports, supported
device types, data width of stream paths) from user logic.
The vFPIO scheduler is responsible for monitoring DMA
requests issued by the MMUs and reordering them based on
priorities assigned to user logic. Applications running on the
host can configure I/O connectivities and priorities for user
logic through custom APIs offered by the vFPIO library.

4.2 I/O Virtualization

We introduce the virtual I/O module that abstracts I/O
devices from user logic. The virtual I/O module is designed
to realize two key functionalities. First, it allows the user
logic to have any number of stream I/O ports. Existing FPGA
platforms directly expose device-specific I/O ports to the
user logic region (vFPGA) [5, 34], which forces developers
to carefully design I/O interfaces of their user logic so that
they can properly connect to the given external I/O ports
and consume/produce data streams. Second, it enables
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dynamically configuring the source and destination of virtual
I/O ports. Modifying target I/O sources/destinations on
existing FPGA platforms will also change the user logic,
which forces users to re-synthesize their hardware design
and reconfigure the FPGA. This process is time-consuming,
and the engineering efforts are not negligible.

Thevirtual I/Omodule is a simplehardwaremodule that en-
ablesdynamic I/Oswitchinganddata-flowcontrolamonguser
logic and I/Odevices. Thevirtual I/Omodule fulfills thedesign
goals above. First, the virtual I/O module liberates developers
from the I/O constraints; the developers do not have to be
aware of the number and specification (e.g., bus width) of the
I/OportsexposedfromtheprovidedShell. Thevirtual I/Omod-
ule is synthesized as a part of the user logic and is configured
in vFPGA slots. It enables configuring the virtual I/O to offer
sufficient and proper I/O ports based on the user logic design.
Second, the virtual I/O module has configurable I/O switches
to avoid statically connecting the user logic to the dedicated
I/O ports of devices. It allows user applications to change
interconnects dynamically between user logic and devices.
Architecture. Figure 3 illustrates the virtual I/O module and
a data flowbetween user logic and I/O devices. The virtual I/O
module consists of three modules: width converters, stream
combiner/divider, and switches. The width converters are
tuned for each I/O port of user logic and convert them into the
fixed port width supported by the Shell. The stream combiner
is responsible for merging multiple streams from user logic
to the same device. Meanwhile, the stream divider distributes
a single input stream from the device into multiple output
streams to user logic. We note that the width converters and
stream combiner/divider are optional; they can be omitted if
I/Oports ofuser logic follow the same I/Oprotocols supported
by the Shell to suppress FPGA resource consumption. The
switches inside the virtual I/O module route the I/O stream
from DMA into corresponding virtual I/O ports and vice
versa. Dynamic I/O switching driven by the virtual I/O
module mitigates engineering efforts to modify/resynthesize
user logic based on the source/destination I/O devices.

The virtual I/Omodule exposes an arbitrary number of vir-
tual I/O ports to user logic,while the numberof device-side I/O
ports is fixed. The number of virtual I/O ports and their data
widths are customized for each user logic and synthesized as
a part of the vFPGA region. The connections between them
can be dynamically configured by vFPIO file APIs (described
in § 4.3). These APIs allow host applications to configure the
switch integrated into the virtual I/Omodules to establish the
connections between virtual I/O ports and device-specific I/O
ports. The MMU integrated into the Shell is not connected to
the data stream buses but is responsible for issuing read/write
requests to dedicated DMAs according to read/write requests
from the host. The MMU exposes control paths to receive
the requests from host applications through the vFPIOAPIs.

4.3 vFPIO Library
The vFPIO library is designed to allow host applications to
dynamically configure I/O connections between user logic
and I/O devices without reconfiguring FPGA. To enhance
programmability, vFPIO abstracts I/O devices as files like
Linux device drivers [23] and offers POSIX-like file APIs
(vFPIOAPIs) to manage I/O-related operations. It decouples
platform-dependent I/O logic from user logic designs, which
makes user logic portable for different I/O devices. Although
such a file-based I/O abstraction is similar to the memory vir-
tualizationmechanism offered by FSRF [36], vFPIO is the first
work that adopts file I/O abstractions to various I/O devices.
vFPIO file APIs. Table 1 shows vFPIO file APIs that allow
host applications to configure I/O interconnects during the
execution. The host application first invokes vfpio_init() to
obtain an available slot on FPGA and program the bitstream
there. The API returns vfpga_fd, which indicates the instan-
tiated user logic. vfpio_huge_alloc() allocates memory for
storing the input or output data. vfpio_open() establishes an
I/O connection between an I/O port of user logic, optionally
specified by port_id, and the device specified by device_type.
Once the devices for all the I/O ports are determined, the
application can call vfpio_read() and vfpio_write() to perform
data transfer. Those APIs invoke DMA transfer: write param-
eters (e.g., data size, memory address) to the control registers
of the corresponding DMAs. vfpio_close() disconnects a
specific port of user logic from the device indicated by dev_fd.
vfpio_release() makes the obtained FPGA slot free.
Programming model. The vFPIO programming model
follows industry-standard programming languages for
heterogeneous devices like CUDA and OpenCL. As well as
their programming models, the vFPIO application consists
of kernel and host codes. Listing 1 shows a simple example
of the kernel code written in Vitis HLS C++. We note
that some vendor-provided platforms (e.g., Xilinx Vitis)
require users to map kernel’s I/O ports to devices using
either pragma (#pragma HLS_INTERFACE) or HLS compiler
options (--connectivity.sp) [58], while vFPIO avoids
embedding such I/O-dependent information to the kernel



vFPIOAPIs Description
int vfpio_init(bitstream) Programs the bitstream to any free vFPGA slot. It returns slot_id if succeeded.
int vfpio_release(slot_id) Release the obtained vFPGA slot.
uint64_t* vfpio_huge_alloc(data_size) Allocate memory for input and output data.
int vfpio_open(device_type, rw_flag, slot_id) Connects all I/O ports of user logic to the same device. Return a handle dev_fd.
intvfpio_open(device_type, rw_flag,slot_id,port_id) Connects an I/O port of user logic given by port_id to a device. Return dev_fd.
int vfpio_close(dev_fd) Disconnects the device from the user logic.
size_t vfpio_read(dev_fd, *address, size) Invokes data transfer from the device to the user logic.
size_t vfpio_write(dev_fd, *address, size) Invokes data transfer from the user logic to the device.
int vfpio_sync(*dev_fds) Wait for completion of on-the-fly data transfers for dev_fds.
Table 1: The definition of vFPIO file APIs. The address is specified only when the target device supports memory-mapped I/O.

code and allows host code to change I/O connectivities using
vFPIO file APIs without reconfiguring FPGA.

Listing 2 shows a simple example of host code written in C.
Thehost code is responsible for initializing vFPGAslotswitha
bitstream of the kernel code and configuring I/O connections.
This example configures the sha256 kernel shown in Listing 1
on FPGA. It invokes the execution by reading inputs from the
specified input stream (FPGAmemory and RDMAmemory)
and writing outputs to the output stream (FPGA memory
and RDMA memory). In the vFPIO programming model,
the host code configures user logic (kernel) to any vFPGA
slot, representing a dynamic FPGA region (Line 2). It then
maps the input/output ports of the kernel to any supported
I/O devices that are abstracted as special files (Lines 11 and
21). Once I/O connections between kernel ports and devices
are established, the host code can invoke data transfers
among them (Lines 14-15 and 24-25). The second argument
of vfpio_read() and vfpio_write(), addresses, can only be
specified if the target device is byte-addressable memory. We
assume that the underlying Shell provides a virtual address
space of those memories for each vFPGA region as supported
by the state-of-the-art Shells (Coyote [34], AmorphOS [32]).
If asynchronous reads/writes are specified by vfpio_open()
with ASYNC_RD/WR flags, the host code can call vfpio_sync()
to wait for completion of data transfers (Lines 16 and 26).
4.4 vFPIO Scheduler
The vFPIO scheduler is designed to prevent I/O bus con-
tentions caused by concurrent read/write requests from
multiple accelerators, which fulfills the following design
requirements. First, the scheduler should be device-agnostic:
it needs to manage individual data streams transferred
from/to these I/O devices because I/O contentions can occur
at every I/O port of different devices. Second, the scheduler
design should be as simplified as possible to be adapted to
various FPGA platforms where different types/numbers of
I/O devices and vFPGAs are supported.
To meet these requirements, vFPIO adopts a modular

design with multiple scheduler instances. Each I/O device
on the FPGA board is paired with two dedicated scheduler
instances employing the same scheduling algorithms, one
for read requests and one for write requests. This approach
enables efficient and independent management of each
I/O device. We note that the scheduler does not directly

manipulate I/O streams but reorders I/O requests issued by
MMUs before the dedicated I/O controllers or DMAs invoke
actual data transfers. The scheduler only reorders requests
across different vFPGAs but retains the order within each
application to keep data integrity. This design reduces the
complexity of each scheduler instance and ensures scalability;
the Shell design can be flexibly extended in correspondence
with the number of supported I/O devices and vFPGAs.
Architecture. Figure 4 illustrates the detailed design of the
vFPIO schedulers. The vFPIO scheduler instance consists of
two scheduler modules for read and write. Their architecture
and applied scheduling logic are the same, while they differ
only in the type of receiving requests. The schedulers receive
priority control information from the host and read/write
requests as input. The schedulers’ output is connected to
the DMA and the multiplex modules in the DMA input and
output data stream. The multiplex module selects a single
data stream from all vFPGA regions for the DMA, as the
DMA can only handle one request at a time.

The scheduler consists of three components: a switch that
selects the next request to execute, a completion FIFO to
store signals for output, and a multiplex FIFO to store the
multiplex control information. The FIFOs serve as buffer
queues to store I/O requestswaiting to be processed. Once the
corresponding requests are processed, the FIFOs return the
completion signals to the input DMA request interfaces. The
request switch decides which vFPGA gets the highest priority
for the subsequent requests based on priority information
from the host. The priority for each vFPGA region is set
by the host application, and it is applied to all I/O requests
initiated/targeted from that vFPGA until the host application
updates the priority. The switch can change the applied
policy between the Round-Robin and the First-in-First-out
(FIFO) based on the priority setup of all vFPGA regions.

When all vFPGAs have the same priority, the scheduler
adopts the Round-Robin policy so that each vFPGA gets
equal timeshare in circular order. If vFPGAs have different
priorities, the scheduler chooses the FIFO policy; vFPGAs
are served based on priority from highest to lowest, and
user logic on a vFPGA region continues the execution until
it finishes or is preempted by a higher priority one. The
FIFO policy is a preemptible one that can guarantee faster
execution for high-priority workloads.



1 void sha256(
2 hls::stream<ap_axiu<AXI_DATA_BITS, 0, PID_BITS, 0> >& in,
3 hls::stream<ap_axiu<AXI_DATA_BITS, 0, PID_BITS, 0> >& out
4 ) {
5 hls::stream

<net_axis<AXI_DATA_BITS>> inStream("input_stream");
6 hls::stream<

net_axis<AXI_DATA_BITS>> outStream("output_stream");
7

8 #pragma HLS dataflow
9 read_input(in, inStream);
10 sha256_compute(inStream, outStream);
11 write_result(out, outStream);
12 }

Listing 1: An example of kernel code to compute SHA256
hashes over input data written in Vitis HLS C/C++. The
kernel contains generic I/O interfaces that can be switched
across multiple I/O types at runtime.

1 void exec_sha256(void* bitstream) {
2 int vfpga = vfpio_init(bitstream);
3 int dev_fd;
4

5 uint64_t
*fMem = (uint64_t *)vfpio_huge_alloc(DATA_SIZE);

6

7 IODev dev1 = IODevs::RDMA_MEM;
8 IODev dev2 = IODevs::FPGA_MEM;
9

10 /* Configure kernel to use RDMA memory */
11 dev_fd = vfpio_open(dev1, ASYNC_RDWR, vfpga);
12

13 /* Transfer data and run kernel code */
14 vfpio_read(dev_fd, fMem, DATA_SIZE);
15 vfpio_write(dev_fd, fMem, DATA_SIZE);
16 vfpio_sync(dev_fd);
17 vfpio_close(dev_fd);
18 /***************************************/
19

20 /* Configure kernel to use FPGA memory */
21 dev_fd = vfpio_open(dev2, ASYNC_RDWR, vfpga);
22

23 /* Transfer data and run kernel code */
24 vfpio_read(dev_fd, fMem, DATA_SIZE);
25 vfpio_write(dev_fd, fMem, DATA_SIZE);
26 vfpio_sync(dev_fd);
27 vfpio_close(dev_fd);
28 /***************************************/
29 }

Listing 2: An example of host code using vFPIO file APIs.

5 Implementation
We implement the vFPIO framework as an extension of
Coyote [34] on AMD Xilinx Alveo U280 cards. We have
considered other FPGAOSes, AmorphOS [32] and FSRF [36],
but the former is not open-sourced, and the latter only
supports memory I/Os. Moreover, AmorphOS and FSRF
targetAmazon’s cloud FPGA instances [3] and do not support
commercially available FPGA cards.
5.1 vFPIO Shell
Weextend theCoyote Shell to apply our I/O virtualization and
scheduling mechanisms. The Coyote Shell on U280 supports
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Figure 4: The vFPIO scheduler module.

four external I/Os: PCIe, DRAM,HBM, and 100 Gbps network.
It adopts the AXI stream interface [19] for data paths between
user logic and dedicated I/O controllers. We integrate
multiple vFPIO scheduler modules into the Coyote Shell to
individually manage these I/O interfaces. Coyote supports
RDMA and TCP/IP stacks for network interfaces [49, 50].
Since we cannot enable both stacks simultaneously, we adopt
the RDMA stack for the vFPIO Shell in this paper. We also
extend the control interface between host applications and
the vFPIO Shell by adding memory-mapped registers to
configure the I/O switch of the virtual I/O modules and set
up the priority. Like Coyote, vFPIO does not fully support
direct data transfers between different I/O devices.
vFPIO Scheduler.We implement the vFPIO scheduler by ex-
tending the TLB arbiter module of the Coyote Shell. Because
the read/write command protocols for the dedicated I/O con-
trollers and DMAs are different, we customize each scheduler
module to their target I/Os and integrate them into the Shell.
The I/O transaction requests issued by host applications are
routed to the corresponding scheduler module.
Our implementation features a new preemptible schedul-

ing policy in addition to the Round-Robin policy, which is
supported by the TLB arbiter for all variants of scheduler
modules that always serve transactions with the highest
priority. The request switch chooses the scheduling policy
based on priority information from the host and selects
the next request to execute. The priority list for all vFPGA
regions can be updated dynamically using vFPIO APIs. The
changes are immediately applied from the next clock cycle.
5.2 Virtual I/OModule
We implement the virtual I/O module as an HDL wrapper
written in SystemVerilog. The virtual I/O module uses the
AXI stream protocol for data paths as well as the vFPIO
Shell. The virtual I/O module is synthesized with user logic
written in HDL and Vitis HLS C++ [14]. The module has
application-specific parameters, such as the number of virtual



Server (Host and FPGA)

Host CPU AMD(R) EPYC 7413
24 cores @2.65 GHz

OS NixOS 23.0, Linux 6.6
Memory 256 GiB DRAM
FPGA Xilinx Alveo U280

HBM2 Capacity 8 GiB
HBM2 Bandwidth 460 GiB/s

PCI Express Gen4x8 with CCIX
Network Interfaces 2x QSFP28 (100GbE)

Table 2: Server and FPGA specification.

I/O ports and port widths, which must be configured for
each user logic before running synthesis. Meanwhile, the
I/O switch in the module can be dynamically configured
through the memory-mapped control registers. The virtual
I/O module supports switching between host (PCIe) DRAM,
FPGADRAM, HBM, and RDMA stack on U280.

5.3 vFPIO Library

We implement vFPIO APIs, listed in Table 1, as a C++ library.
All the APIs manipulate memory-mapped control registers of
the Shell through the device driver and PCI subsystem. The
vfpio_init(), vfpio_release(), vfpio_open(), and vfpio_close()
APIs dynamically configure the selected vFPGA slot. The
vfpio_init() invokes FPGA reconfiguration with the selected
bitstream through the ICAP [4] interface. It also opens a
memory-mapped region between the host and the FPGA for
I/O data communication. The obtained slot is released by
vfpio_release(). The vfpio_open() transmits the I/O device
type to the virtual I/O module by setting the I/O type to
the module’s control registers. As a result, the switch is
configured to connect the specified user logic’s I/O port to
the device. The vfpio_close() performs the reverse operation,
clearing the configuration of the I/O switch and notifying
the corresponding scheduler.

The vfpio_read() and vfpio_write() APIs invoke actual data
transfers via data paths. They initiate read and write oper-
ations of the selected I/O device by writing information, such
as the data size and source/destination memory addresses,
to the control registers. The read/write engines of the Coyote
MMU react to the register values and generate read/write
commands of the corresponding controllers/DMAs. The
vfpio_sync() is realized by a CPU thread polling the status
register of the corresponding I/O controller or DMA.

5.4 vFPIO Portability

The virtual I/O concept of vFPIO can be extended to other
FPGA frameworks, such as AmorphOS [32] andOptimus [38],
by implementing the vFPIO scheduler and the virtual I/Omod-
ules. ThesecomponentscanworkonotherFPGAdevices since
theydonothave specialhardware resource requirements. The
virtual I/O components will not significantly affect the per-
formance of other FPGA OSes due to their design simplicity.

Name Description
aes AES-256 crypto

sha256 SHA-256 hashing
md5 MD5 hashing
nw Needleman-Wunsch

matmul Matric multiplication
sha3 Keccak-256 hashing
rng Random sequence
gzip gzip compression

perf-(IO) Data streaming using (IO)

Table 3: FPGA benchmarks used in the evaluations.

6 Evaluation
We evaluate the vFPIO framework from the following dimen-
sions: performance (§ 6.1),programmability (§ 6.2),portability
(§ 6.3), scheduler (§ 6.4), and resource overheads (§ 6.5).
Experimental setup. We perform the experiments on
two servers configured as shown in Table 2. The two U280
FPGAs on different servers are connected through a 100Gbps
network cable for the RDMA setup. We configure the vFPIO
Shell with up to three virtual FPGA regions to enable the
parallel execution of multiple applications.
Benchmarks. Table 3 shows the applications we use for
evaluations. The perf-(IO) has two variants, perf-host and
perf-fpga, one using host DRAM and the other using FPGA
HBM as the I/O devices used for data transactions. We
have considered more complex applications as benchmarks;
however, they have few advantages over existing ones
regarding I/O throughput on FPGA.We believe the current
set of benchmarks represents a wide group of applications
and can sufficiently demonstrate vFPIO’s properties.
6.1 Performance
We evaluate the end-to-end performance to show the
overheads introduced by vFPIO.
Methodology.Wemeasure the I/O throughputofbenchmark
applications to evaluate vFPIO’s performance overheads.
Since no storage driver exists that can execute directly on
an FPGA, we emulate a storage device using the FPGA’s local
memory, i.e., the HBM. Through this setup, we emulate a
near-data computing environment wherein applications can
offload specific logic to be executed close to the location of
the input data in the HBM.We also consider an RDMA setup,
where input data is fetched from remote storage, i.e., host
DRAM on a remote node, and the application invokes RDMA
reads and writes to obtain the data over the network. The
application’s output is written to the local host DRAM.We
evaluate vFPIO against two baselines: a host-only baseline
(Host) that executes the entire application on a host CPU
and Coyote (Coyote) that offloads a computational task to
user logic running on the original Coyote Shell. In the Host
case, the host application reads input data from FPGAHBM
and executes the computation. We include CPU-only cases
to highlight the performance advantages of FPGA compared
with CPU-only setups. Whereas, in the cases of vFPIO and
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Coyote, the computational logic offloaded to FPGA directly
reads the input data and transfers the results to the host mem-
ory. For theRDMAcase,weuse twonodes for the experiments:
one server and one client. The server node sends the input
data from the host DRAM to the client node using RDMA.
The transferred data is either stored in host memory on the
client node for the host-only computation (Host) or directly
executed by the user logic on FPGA (vFPIO and Coyote). We
use one vFPGA region to instantiate the user logic for vFPIO
and Coyote. The scheduler uses the default Round-Robin
scheduling policy for both setups. We repeat the execution
of each application ten times and report the mean value.

Results. Figure 5 shows the average throughput of the ap-
plications on a log scale. The average percentage of standard
variance to mean for all benchmarks is 18.4%. Overall, we see
that both FPGA solutions (vFPIO and Coyote) achieve higher
performance for both memory and RDMA I/O setups than
the host-only baseline. For memory I/O applications, vFPIO
achieves, on average, 11.5 × faster than the host baseline,
and the performance difference between Coyote is only 0.7%
on average for all applications. For applications using RDMA,
the throughput on vFPIO is, on average, 6.3× faster than the
host baselinewith a 1.1% of performance difference compared
with Coyote. Note that with RDMA, applications have better
throughput than using FPGAHBM. This performance differ-
ence is because the RDMA stack uses a streaming interface
and sends data directly to the host DRAM without using
FPGA HBM. This setup avoids the latency of writing and
reading from FPGAHBM for I/O. These results indicate that
FPGA task offloading significantly improves the performance
of I/O-intensive workloads compared to the CPU-only
solution for both the vFPIO and Coyote setups. In addition,
the performance difference between vFPIO and Coyote for
both I/O devices is negligible, showing that our virtual I/O
extension does not affect the application’s I/O throughput.

Summary. vFPIO outperforms the CPU-only host
baseline for all I/O intensive benchmarks (11.5× for HBM
and 6.3 × for RDMA) and incurs negligible overhead
comparedwithCoyote (0.7% forHBMand 1.1% for RDMA).

SLoC CC
Applications Coyote vFPIO(%) Coyote vFPIO(%)
Host code 141 58 (58.9) 21 5 (76.2)

aes 892 857 (3.9) 64 64 (0)
sha256 599 441 (26.4) 67 61 (9)
md5 700 592 (15.4) 55 51 (7.3)
nw 870 859 (1.3) 95 95 (0)

matmul 301 290 (3.7) 45 45 (0)
sha3 456 445 (2.4) 75 75 (0)
rng 455 434 (4.6) 53 53 (0)
gzip 240 209 (12.9) 0 0 (0)

Table 4: Source Lines of Code (SLoC) and Cyclomatic
Complexity (CC) comparison between Coyote and vFPIO
for the host (CPU) application code and user logic. The
table also shows the percentage reduction in SLOC and
CC for vFPIO compared to Coyote.

6.2 Programmability
We evaluate the programmability benefits of vFPIO for both
host code and FPGA user logic.
Methodology. We evaluate the programmability benefits
along two dimensions: source lines of code (SLOC) and
cyclomatic complexity (CC). The twometrics measure how
many I/O control/interface codes developers need to write,
thus indicating the required programming effort. We employ
scc [44] to obtain these metrics for FPGA user logic and host
application code that controls and communicates with the
user logic. We evaluate these metrics for both Coyote and
vFPIO. The host code is written in C++, and the user logic
is written in SystemVerilog and VHDL.
Results. Table 4 shows the SLOC and CC metrics of our
benchmarks for both Coyote and vFPIO. For the C++ host
code, we only show SLOC and CC for a common template
used for all applications. The result highlights that vFPIO
APIs achieve a 58.9% reduction in SLOC and a 76.2% reduction
in CC in host code compared to Coyote. In Coyote, switching
between various I/O devices for the same application requires
special reconfiguration code written in the host code on a per
I/O device basis. vFPIO avoids this additional effort because
the virtual I/O module decouples device-specific I/O inter-
faces from user logic, and the vFPIOAPIs provide easy-to-use
I/O abstractions for switching between multiple I/O devices.
Similarly, for the FPGA user logic, we show a maximum



Throughput Reconfiguration time

vFPIO [MiB/s] Coyote [ms] vFPIO [µs]
App HBM (%) Host (%) HBM Host
aes 525.2 (98.3) 1895.6 (105.9) 21.0 21.1 1.3

sha256 527.4 (98.3) 1865.5 (96.2) 20.2 19.4 1.3
md5 531.9 (98.3) 1889.1 (99.6) 18.8 17.6 1.3
nw 82.92 (98.8) 304.9 (102.1) 29.2 29.3 1.3

matmul 404.4 (102.1) 1418.6 (97.2) 23.9 23.7 1.3
sha3 0.79 (99.2) 2.85 (101.0) 19.4 17.7 1.3
rng 8.43 (97.0) 30.69 (99.2) 17.1 17.0 1.3
gzip 2.66 (100.8) 9.81 (103.2) 23.6 23.9 1.3

Table 5: Throughput and I/O reconfiguration time using
FPGAHBM and host memory on vFPIO and Coyote. The
relative (%) compares with the throughput on Coyote.

reduction of 26.4% for SLOC and 9% for CC. This is because in
vFPIO, due to the decoupling between the computation logic
and I/O logic, the user logic has a generic I/O interface that
can be switched between I/O devices at runtime. Whereas,
in Coyote, the user logic has to be rewritten to interface with
specific I/O devices. These results indicate that vFPIO reduces
the codes developers need to write for both host applications
and FPGA user logic and reduces program complexity, thus
improving the programmability of FPGA.
Summary. FPGA I/O configuration driven by the vFPIO
APIs simplifies the design of both the host code (reduce
58.9% SLOC, 76.2% CC) and the user logic (reduce 26.4%
SLOC, 9% CC) by decoupling the computation logic from
device-specific I/O interfaces.

6.3 Portability
We evaluate vFPIO’s portability advantages against Coyote.
Methodology. To evaluate the portability, we compare the
I/O switching overhead when an application changes user
logic’s I/O connection from one device to another for both
vFPIO and Coyote. First, we prepare two partial bitstreams
for each application for Coyote, one using FPGA HBM and
one using host memory as an I/O device, and then measure
the time required to reconfigure the vFPGA region with
each bitstream. For vFPIO, we prepare only one partial
bitstream for each benchmark, where the user logic and
virtual I/O module are configured to dynamically switch
I/O interfaces between HBM and host memory. Wemeasure
the time required to switch between the FPGA’s HBM and
host memory using vFPIO’s I/O switch. Additionally, to show
the overheads of vFPIO’s I/O switch, we compare the I/O
throughput in MiB/s for both Coyote and vFPIO.
Results. Table 5 shows the application throughput and the
reconfiguration time for both vFPIO and Coyote. With dy-
namic I/O switching enabled, vFPIO achieves nearly the same
(at most 3.8% less) throughput for all benchmark applications
compared to Coyote with both FPGAHBM and host memory.
The result shows that vFPIO’s I/O switching mechanism does
not affect applications’ performance. For the reconfiguration

time, vFPIO achieves 1.3 µs for all benchmark applications,
while Coyote requires, on average, 22.7 ms for HBM and
22.4 ms for host memory. We note that vFPIO’s I/O reconfigu-
ration time is the same for all benchmark applications because
the switching mechanism does not depend on applications.
This significant improvement compared to Coyote is because
vFPIO only requires changing a control register value on
the FPGA, after which the virtual I/O module switches the
connection between user logic and I/O devices without recon-
figuration. On the other hand, Coyote has to reconfigure the
entire vFPGA region to switch the user logic between various
I/O devices. The reconfiguration time on Coyote depends on
the application’s partial bitstream size (on average, 13.8 MiB
in our case), and it is muchmore time-consuming than simply
writing values to memory-mapped control registers.
Summary. The vFPIO framework allows user logic to
dynamically switch I/O connections among different
I/O devices with less reconfiguration time (1.3 µs) than
Coyote (22.7 ms for HBM, 22.4 ms for Host). It does have
negligible throughput penalties (3.8% at worst).

6.4 Scheduler
Weevaluate the scheduler’s effectiveness for performance iso-
lation across multiple applications and associated overheads.
6.4.1 Performance Isolation

We first evaluate the ability of the scheduler to provide
performance isolation across concurrent applications.
Methodology. To demonstrate the effectiveness of the
priority-based I/O scheduling, we configure multiple vFPGAs
with different I/O scheduling priorities and observe the execu-
tion timewhen running all application instances concurrently.
We configure the three instances of perf-host, which transfer
1,000 chunks of 16 kB data between host and FPGA via PCIe,
and measure their execution times when run concurrently.
We configure one instance with high I/O scheduling priority
(HP) and the others with lower priorities (LP-1 and LP-2). For
comparison, we run the same experiment with the original
Coyote Shell, where the round-robin policy (RR) is applied,
andmeasure the average execution timeof the three instances.
Results. Figure 6 (a) shows the execution times of three in-
stances of the application in terms of the number of cycles for
high-priority (HP) and low-priority (LP-1 and LP-2) instances.
The figure also shows the average execution times of three ap-
plication instances for round-robin (RR). We observe that the
execution of the HP instance is 1.8× faster than the LP-1 and
LP-2 instances and 1.7× faster than the RR instance because
the vFPIO scheduler always prioritizes I/O requests issued
from the HP instances. The scheduler suspends I/O requests
from the two LP instances until the HP instance is finished
and resumes them concurrently in a round-robin fashion. The
result indicates that the vFPIO scheduler preserves the I/O
throughput for high-priority tasks. We also observe that the
execution time of the two LP instances is longer than the RR
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Figure 7: The average latency of data transfers issued by (a) perf-host and (b) perf-fpga benchmarks (in clock cycles) on Coyote and vFPIO.

instance, while the performance difference is only 6.3%. One
factor is that the vFPIO schedulermitigates the numberof con-
text switches between I/O requests fromdifferent instances,as
shown in Figure 6 (b). Fewer context switches mean memory
accesses are more continuous and fewer page faults happen,
mitigating the performance penalties for low-priority tasks.
6.4.2 Scheduling Overheads

We next evaluate the scheduler’s I/O performance overheads.
Methodology. To break down the overhead incurred by the
vFPIO scheduler, we configure two applications (perf-host,
perf-fpga) that invoke data transfers on the vFPIO andCoyote
and measure the average latency of data transfers on the
different platforms. Wemeasure the average latency of 1,000
data transfers while changing data sizes from 1 kB to 256 kB.
Results. Figure 7 shows the average latencymeasured by the
two microbenchmarks. For both benchmarks, the data trans-
fer latency on the vFPIO is equivalent to Coyote. These results
indicate that the vFPIO scheduler overhead does not induce
additional performance overheads compared to Coyote’s I/O
scheduler, which supports the round-robin policy only.
Summary. The vFPIO scheduler arbitrates concurrent
I/O requests from multiple vFPGAs to maximize the
throughput of high-priority tasks (1.7 × faster than
round-robin among three vFPGAs).

6.5 Resource Overheads
We evaluate the FPGA resource overheads induced by vFPIO.

Name LUT (%) FF (%) BRAM (%)

U280 1303680 (100) 2607360 (100) 2016 (100)

Coyote 338727 (26.0) 687011 (26.3) 408 (20.2)
vFPIO 344506 (26.4) 700906 (26.9) 408.5 (20.3)

RDMA 172958 (13.3) 427219 (16.4) 213 (10.6)
PCIe DMA 59089 ( 4.5) 58114 ( 2.2) 80 ( 4.0)
Local DMA 13691 ( 1.1) 11146 ( 0.4) 0 ( 0.0)

MMU 8102 ( 0.6) 13773 ( 0.5) 20 ( 1.0)
Scheduler 270 ( 0.0) 513 ( 0.0) 0 ( 0.0)

Virtual IO 3 ( 0.0) 3090 ( 0.1) 0 ( 0.0)

Table 6: vFPIO’s resource usage. The relative (%) compares
with the available resources on the U280 FPGA. Coyote
and vFPIO represent the entire Shell.

Methodology. We break down the resource usage of the
vFPIO Shell using Vivado IDE, which includes lookup tables
(LUTs), flip-flops (FFs), and block RAM (BRAM). We report
the entire usage of the Shell and individual usages of various
primary hardware components. We also report the resource
utilization of the Coyote Shell to verify the resource overhead
induced by our hardware extension. Both vFPIO and Coyote
Shells have one vFPGA slot, and the vFPIO connects to
the host (PCIe) interface, local memory (DRAM), and two
network ports via RDMA.

Results. Table 6 shows the resource usage of hardware
components. Overall, the vFPIO Shell consumes 26.4% of
LUTs, 26.9% of FFs, and 20.3% ofBRAMs in theU280 FPGA.We



observe that 67.4% of LUTs and 69.1% of FFs are consumed by
Coyote’s RDMA stack and the vendor-provided IP core (PCIe
DMA, i.e., XDMA). Compared to the Coyote Shell, vFPIO in-
duces only 0.4% and 0.6% resource overheads of LUTs and FFs,
respectively. The results also indicate that the scheduler and
virtual I/O modules use fewer resources than the dedicated
DMAs. We note that these modules consume more resources
as the number of vFPGAs and supported I/O devices increases,
while individual modules are small enough to scale up.
Summary. vFPIO incurs negligible resource overheads
(0.4% LUTs, 0.6% FFs) compared to the state-of-the-art
Shell. The individual scheduler and virtual IO modules
are small enough, even considering the scalability.

7 RelatedWork

FPGA I/O virtualization. FPGA virtualization studies have
applied OS primitives to hardware tasks to enable multi-
tasking [21, 25, 28, 54, 59], memory virtualization [18, 22, 60],
and host-FPGA communication [31, 39], while I/O virtualiza-
tion is not well explored. FPGAOSes [32, 34, 36, 53, 57] focus
on virtualizingmemory devices and do not consider the other
device types. ViTAL [61–63] splits reconfigurable regions
of FPGA devices into segments and constructs a single,
virtualized slot over them. Unlike vFPIO, it does not virtualize
external I/Os from the FPGA. AmorphOS [32] and FOS [57]
provide FPGA resource sharing and isolation among dis-
trusted processes. They statically embed awrappermodule to
user logic tomediate external I/O accesses,while dynamic I/O
configuration is not supported. In contrast to these studies,vF-
PIO offers a unified way to abstract various types of external
I/Odevices andenables dynamic switchingof I/O connections.
FPGA programmability and portability. Prior studies
provide abstracted programming models to ease FPGA
application development and performance tuning. A
compiler-based approach is commonly used for kernel code
programming.Merlin compiler [15] provides anOpenMP-like
programming model and pragmas for parallelization and
pipelining. COMBA [65] uses a model-based analysis frame-
work to generate high-performance pragma configuration.
Cascade [45] and Synergy [37] allow kernel code to describe
I/O data flows on FPGA at a language level. These approaches
embedI/O information intokernelcode,whichharms thecode
portability. Unlike them, vFPIO decouples device-specific
I/O information from kernel code, which gains portability.
For host code programming, Catapult [42] comes with a

standard driver and user-level interface for communication
between the host application and FPGA. VirtualRC [33]
allows developers to design user logic with configurable
interfaces that run on the provided virtual FPGA platform.
BORPH [53] and FSRF [36] propose a filesystem-based
FPGAmemory abstraction. They allow host code to operate
memory reads/writes on FPGA using file APIs. The vFPIO
framework further extends the file-based abstraction to cover

diverse I/O interfaces supported by modern FPGA devices.
FPGAI/Oscheduling. FPGA task schedulingmainly focuses
on improving FPGA resource usagewith time-sharing among
multiple tasks [24,25,34,59] and accelerator reuse that avoids
frequent partial reconfiguration [57]. AmorphOS [32] focuses
more on spatial sharing and mitigates the resource overhead
caused by fragmentation due to partial reconfiguration.
The vFPIO scheduler works independently from these task
schedulers and potentially cooperates with them to achieve
better resource utilization and higher I/O throughput.
Regarding I/O scheduling, most existing studies focus

on network packet scheduling [41, 43, 52]. FlowBlaze [41]
presents an open abstraction for using stateful packet
processing functions in programmable NICs. Sivaraman et
al. [52] propose a programmable packet scheduler design that
applies different scheduling algorithms without hardware
redesign. On the otherhand,Coyote [34] arbitrates read/write
requests for every I/O device, but it simply provides a fair
share for all the accelerators configured in the vFPGA slots.
The vFPIO scheduler is superior to these approaches because
it supports a preemptible scheduling mechanism that can
be applied to any type of I/O transaction.

8 Conclusion
This paper introduces vFPIO, an FPGA-based I/O acceleration
framework with the following tangible contributions:
1. I/O virtualization for user logic. We propose a new

notion of I/O virtualization for FPGA accelerators that im-
provesdesignportability. Theproposedvirtual I/Omodule
abstracts I/O interfaces of external devices and decouples
the device-specific specifications from user logic design.

2. File abstraction for configurable I/Os. We present
POSIX-like file I/O APIs that dynamically configure I/O
directions of user logic. They allow developers to easily
reuse the same user logic to manage different I/O devices
and data transfers without specific hardware knowledge.

3. Device-agnostic I/O scheduling. We present an I/O
transaction scheduling mechanism that arbitrates mul-
tiple read/write requests from concurrent applications to
prevent throughput degradation due to bus congestion.
We implement the vFPIO framework based on Coyote [34]

for AMD Xilinx FPGA cards equipped with various I/O
interfaces. vFPIO enables FPGA workloads to manage
various I/O devices without changing the hardware design
while introducing slight performance penalties.

Software artifact
We release vFPIO as an open-source project [13].
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A Artifact Appendix
A.1 Abstract
This artifact contains the implementation and scripts to
reproduce the experiments and figures from theUSENIXATC
2024 paper – "vFPIO: A Virtual I/O Abstraction for FPGA-
accelerated I/ODevices" by J. Chen,H. Unnibhavi, A. Koshiba,
P. Bhatotia. vFPIO is a hardware-software co-design frame-
work that offers improved programmability and portability
for FPGA I/O accelerators while ensuring the I/O throughput
for high-priority tasks during resource contention.
A.2 Scope
The artifact is used to reproduce all the experimental results
shown in the paper. It contains both hardware and software
source code needed to compile the FPGA Shell and host
applications and scripts to run the evaluation. We provide
pre-compiled FPGA bitstreams of the Shell and benchmarks
to save development time.
A.3 Contents
The artifact is published in our GitHub repository and
contains the following items:

• bitstreams/: the pre-compiled FPGA bitstreams.
• driver/: source code for the Linux kernel driver.
• hw/: source code for the vFPIO Shell and user logic of
benchmark applications.

• sw/: source code for host applications of benchmark
applications.

The root path also contains all the scripts and files for
reproducing the evaluation results.
A.4 Hosting
All the project source code, including the instructions for
evaluating and building the software, is available in the fol-
lowing git repository: https://github.com/TUM-DSE/vFPIO.
Please use the vfpio branch to reproduce the results.
A.5 Requirements
We require the following software and hardware configura-
tions to reproduce our experimental results.
A.5.1 Hardware Dependencies

• Two machines with AMD EPYC 7413 CPU connected
to public network.

• Two Xilinx (AMD) Alveo U280 FPGA cards.
• The two FPGAs should be directly connected using
a QSFP28 network cable using network port 0 on the
FPGA card.

A.5.2 Software Dependencies

• Operating system: NixOS 23.11 with Linux kernel 6.8.12.
• Nix: we use the Nix package manager to download all
build dependencies for reproducibility. We use nix-shell
to provide a consistent runtime environment.

• Python 3.11 or newer for the script that reproduces the
evaluation.

• Vivado v2022.1 to compile the FPGA bitstreams and
program the FPGA.

A.6 Methodology
The evaluation script reproduce.py reproduces the
following results shown in the paper:

• Figure 5 (§ 6.1): throughput comparison of the three se-
tupsusingmemorybenchmarks andRDMAbenchmarks
to show the performance overhead of vFPIO.

• Table 4 (§ 6.2): Source Lines of Code (SLoC) and Cyclo-
matic Complexity (CC) comparison between vFPIO and
Coyote for thehost (CPU) application code anduser logic
to show the improvement in programmability of vFPIO.

• Table 5 (§ 6.3): throughput and I/O reconfiguration
time comparison of vFPIO and Coyote using FPGA
HBM and host memory as I/O devices to show the fast
reconfiguration of vFPIO.

• Figure 6 (§ 6.4.1): micro-benchmarks to show the
effectiveness of performance isolation of vFPIO.

• Figure 7 (§ 6.4.2): micro-benchmarks to show the
overhead of vFPIO scheduler.

• Table 6 (§ 6.5): hardware resource usage of vFPIO.
To run reproduce.py, one must prepare the Linux kernel
driver, host application binaries, and FPGA bitstreams. The
FPGA bitstreams are already provided in the GitHub repo
to avoid the long compilation time.

To build the driver, run the following commands:

$ nix-shell vfpio.nix
$ cd driver
$ make
$ exit

The driver installation is handled by the evaluation script.
However, to use the RDMA stack, the user needs to specify
the MAC addresses of the FPGA cards. These values can be
modified in the program_fpga.sh file (mac_addr_q0).

Tobuild thehost applications, run the following commands:

$ nix-shell vfpio.nix
# in the project repo root
$ bash compile_sw.sh

A.6.1 Performance (§ 6.1)

First, run the following commands tomeasure the benchmark
throughput for different setups:

# requires nix-shell vfpio.nix
$ python3 reproduce.py -r -e Exp_6_1_host_list
$ python3

reproduce.py -r -e Exp_6_1_coyote_list↪→

$ python3
reproduce.py -r -e Exp_6_1_vfpio_list↪→

$ python3 reproduce.py
-r -e Exp_6_1_host_rdma_list -s ip_address↪→



$ python3 reproduce.py -r
-e Exp_6_1_coyote_rdma_list -s ip_address↪→

$ python3 reproduce.py
-r -e Exp_6_1_vfpio_rdma_list -s ip_address↪→

ip_address refers to the public IP address of the machine
running the scripts.

To generate Figure 5, run the following commands:

$ python3 write_csv.py -e 6_1
$ python3 plot_e2e.py

A.6.2 Programmability (§ 6.2)

Run the following commands to generate a CSV file
(complexity.csv) that contains the data to fill Table 4:

# requires nix-shell vfpio.nix
# in the project repo root
$ bash

./measure_complexity.sh > results_6_2.csv↪→

$ python3 write_csv.py -e 6_2

A.6.3 Portability (§ 6.3)

Note that the throughput data in Table 5 uses the result
of A.6.1. Run the following commands to measure and obtain
the reconfiguration time for vFPIO and Coyote:

# requires nix-shell vfpio.nix
# in the project repo root
$ python3

reproduce.py -r -e Exp_6_3_pr_host_list↪→

$ python3
reproduce.py -r -e Exp_6_3_pr_hbm_list↪→

$ python3 reproduce.py
-r -e Exp_6_3_host_coyote_list↪→

$ python3
reproduce.py -r -e Exp_6_3_host_vfpio_list↪→

$ python3
reproduce.py -r -e Exp_6_3_vfpio_list↪→

Next, run the following command to generate a CSV file
(reconfig.csv) that contains the data to fill Table 5.

python3 write_csv.py -e 6_3

A.6.4 Scheduler (§ 6.4)

First, run the following commands to obtain data for Figure 6
and 7:

# requires nix-shell vfpio.nix
# in the project repo root
$ python3

reproduce.py -r -e Exp_6_4_1_cycle_list↪→

$ python3
reproduce.py -r -e Exp_6_4_1_cntx_list↪→

$ python3
reproduce.py -r -e Exp_6_4_2_host_list↪→

$ python3
reproduce.py -r -e Exp_6_4_2_fpga_list↪→

To generate Figure 6, run the following commands:

$ python3 write_csv.py -e 6_4_cycle
$ python3 write_csv.py -e 6_4_cntx
$ python3 plot_iso.py

To generate Figure 7, run the following commands:

$ python3 write_csv.py -e 6_4_host
$ python3 write_csv.py -e 6_4_fpga
$ python3 plot_overhead.py

A.6.5 Resource Overheads (§ 6.5)

We provide the pre-generated resource utilization report files
(util_coyote.csv, util_vfpio.csv) to save compilation
time. These reports are generated by Vivado IDE. Run the
following commands to extract the resource utilization of
each component:

# requires nix-shell vfpio.nix
# in the project repo root
$ python3

reproduce.py -e Exp_6_5_resource_util↪→
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